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ity techniques. The SUSY-breaking squark and gaugino masses in type IIB models depend
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arguments show that such compactifications are generically globally nongeometric. Our
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formations are the mirrors of NS-NS 3-form flux, in accord with work from the supergravity

point of view. Using the worldsheet current algebra, we explain why mirror symmetry may

continue to hold in the presence of fluxes breaking the symmetries (e.g., (2,2) SUSY) on

which mirror symmetry is typically taken to depend. Finally, we give evidence that nonper-

turbative worldsheet effects (such as worldsheet instantons) provide important corrections

to the supergravity picture in the presence of auxiliary fields for Kähler moduli.
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1. Introduction

In this article, we compute the auxiliary fields of N = 2 hypermultiplets in type IIB Calabi-

Yau compactifications to four dimensions. In type IIB, these multiplets contain the Kähler

moduli and the dilaton-axion, as well as the RR axions. This work is a continuation of the

program begun in [1, 2], which focused on the vector multiplets.

Our work has several motivations. The first, stemming from particle physics model

building considerations, is that expectation values for these auxiliary fields generate explicit

SUSY-breaking terms in the low energy four dimensional theory [3]. This has proven useful

for understanding N = 1 flux compactifications. For example, it was shown in [1, 2, 4]

that the flux-induced superpotential W =
∫

G3 ∧Ω derived in [5 – 7] can be computed as a

term explicitly breaking N = 2 to N = 1 supersymmetry, proportional to the expectation

values of auxiliary fields in vector multiplets.

The same computations are also useful in studying N = 1 to N = 0 supersymmetry

breaking at lower energies in models with D-branes and/or fluxes. If N = 2 supersymmetry

is broken at a higher scale than N = 1, as happens in many flux compactifications, and

N = 1 supersymmetry is broken at a still lower scale, one can separate the auxiliary fields

into those (call them Fhigh) whose expectation values break N = 2 to N = 1, and those

(call them Flow) whose expectation values break N = 1 to N = 0. After performing the

necessary orientifold projections compatible with the N = 1 supersymmetry, our results

should allow the closed string fields to be written as N = 1 superfields with auxiliary fields

of type Flow. The auxiliary fields in these supermultiplets then parametrize supersymmetry

breaking in the low-energy N = 1 effective Lagrangian. In particular, the SUSY-breaking

squark and gaugino masses will depend on the auxiliary fields we compute here [1, 2]. In

the conclusions we will discuss some recent work on building SUSY-breaking string models,

for which the results here and in [1, 2] have some relevance.

A second motivation for our work arises from the desire to extend the powerful results

of mirror symmetry to compactifications with N < 2 spacetime supersymmetry. For type II

compactifications these involve NS-NS fluxes, and finding the mirrors of compactifications

with such fluxes is a long-standing problem. However, in the cases that we can understand a

compactification with N < 2 supersymmetry as a deformation of a N = 2 compactification

by expectation values for auxiliary fields, we can make progress by understanding the action

of the mirror map on these auxiliary fields.

– 2 –
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More precisely, the auxiliary fields for hypermultiplets in type IIA (whose scalar com-

ponents include the complex structure moduli) have been identified in [1, 2] as a combi-

nation of NS-NS 3-form flux and a subset of the SU(3) intrinsic torsion classes.1 These

torsion classes parametrize deformations of the compactification away from a pure special

holonomy compactification. The mirrors of these fluxes and torsion classes should be the

auxiliary fields for the type IIB hypermultiplets, which include the Kähler moduli.

Supergravity arguments already suggest an answer. The mirrors of type IIA compact-

ifications with purely electric2 NS-NS flux in H(2,1)(X) ⊕H(1,2)(X) and intrinsic torsion

of type W3,4, have been identified with “half-flat” manifolds [9 – 17]. For more general NS-

NS flux, the mirrors have been identified with compactifications of SU(3) × SU(3) struc-

ture [10, 11, 18].3 On the other hand, considerations of the effective four-dimensional super-

potential [19 – 24] and of the action of T-duality transformations (such as mirror symmetry)

on NS-NS flux [25 – 29] indicate that these mirrors should be generically nongeometric in

the sense discussed in [30] (other related approaches to nongeometric backgrounds include

asymmetric orbifolds [31 – 35] and Landau-Ginzburg models [36]). One goal of the present

work is to make this claim more precise, and to relate auxiliary fields in IIB hypermultiplets

to (nongeometric) intrinsic torsions in SU(3) × SU(3) structure compactifications.

Our basic approach uses an N = 2 superspace formalism that is natural from the

worldsheet point of view. Our computations confirm both lessons of the previous paragraph.

Auxiliary fields for Kähler moduli correspond locally on the target space to intrinsic torsion

classes for background with SU(3) × SU(3) structure. However, when the two auxiliary

fields in a given multiplet are dialed independently of each other, the string background is

generically nongeometric.4 This need for nongeometric structures becomes clear from the

worldsheet, as we will discuss. Furthermore, one can understand why mirror symmetry

may still be valid from the worldsheet point of view: it corresponds to reversing the sign

of a U(1)R current, which exists even though it is no longer conserved.

Note that while the torsion classes are typically defined without reference to an un-

derlying (pre-deformation) Calabi-Yau manifold, the picture that we adopt here is that

one starts with an ordinary Calabi-Yau compactification, and then deforms that compact-

ification as parametrized by the fluxes and torsion. However, it is not known that good

compact examples of the types we discuss are related by any physical process (such as

domain walls [5, 37]) or sensible mathematical deformation to a Calabi-Yau background

with D-branes and orientifolds. For noncompact local models, however, one can make

arbitrarily small, continous deformations of the flux and torsion classes, and we will to

a large degree focus on such models here. (Our observations about the relationship to

1In the notation of [8], the relevant torsion classes are W3 and W4, defined in section 2.4 below.
2Here, purely electric NS-NS flux means flux through the A cycles but not B cycles, in a symplectic

basis of H3.
3Here, SU(3)×SU(3) refers to the structure group of an extension of the bundle T ⊕T ∗, or equivalently,

to distinct left and right moving SU(3) structures of the usual frame bundle.
4Note that refs. [19 – 21] also consider backgrounds with “R-flux,” which are not even locally geomet-

ric. We suspect that we are missing the fluxes because we are considering deformations of a geometric

background.
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nongeometric models also holds for compact examples, but the specific arguments there

do not depend on any relation to a nearby Calabi-Yau). At any rate, we hope that the

current work, combined with the many results regarding the action of mirror symmetry on

D-branes, will be a useful guide to the story for fully compact models.

The fact that the compactifications we study are globally nongeometric demonstrates

that supergravity is insufficient. Furthermore, the auxiliary fields for hypermultiplets in

type IIB induce superpotentials for the Kähler moduli of the underlying Calabi-Yau geom-

etry; at the minimum of the resulting potential, the volumes of some cycles will generically

be string scale. In section 6, we provide direct arguments that worldsheet instanton ef-

fects are important. The reader may sensibly object that most of our analysis nonetheless

uses the supergravity approximation. To the extent that we study local noncompact mod-

els, and can consider the hypermultiplet auxiliary fields to parametrize small, continuous

deformations of Calabi-Yau backgrounds (as opposed to discrete deformations), we are

on good footing. Compact models will require a stringy version of the mathematics of

SU(3)×SU(3) structure, as well as need to satisfy additional constraints, as in [38]. Hope-

fully, the worldsheet perspective in this paper will provide the first step in this direction.

More generally, we feel that our worldsheet perspective gives a useful organization of and

insight into generalized geometries.

2. Review

In this section, we review some facts about compactifications that give N = 2 effective

actions; this means that the Lagrangian is invariant under off-shell N = 2 supersymmetry

transformations, but expectation values for auxiliary fields break the N = 2 supersymme-

try. We open in section 2.1 with a discussion of the N = 2 superspace expansion of [39 – 42]

for hypermultiplets, and discuss the auxiliary field structure. In section 2.2 we review the

relationship between spacetime supersymmetry in four dimensions and G-structures on the

compactification manifolds. In section 2.3 we review the relationship between spacetime

and worldsheet supersymmetry. Finally, in section 2.4 and section 2.5 we review some basic

facts about SU(3) structure and SU(3) × SU(3) structure, respectively.

2.1 N = 2 superspace expansion of hypermultiplets

In this paper, we study type IIB theories with closed string modes that lie in N = 2

supermultiplets. As described in the previous section, this makes sense in models for which

N = 2 supersymmetry is broken to N = 1 at a lower scale than the compactification

scale, or is so broken by local defects in the compactification. Many of the type II flux

compactification models that have dominated the recent literature on string model-building

fall into this class [43, 44], as do Hořava-Witten compactifications [45, 46] for a broad range

of parameters consistent with coupling constant unification [47, 48]. We focus on type IIB

models in this paper.

Following ref. [3], our interest is in breaking N = 2 supersymmetry to N = 1 or

N = 0 through expectation values of bosonic auxiliary fields in N = 2 multiplets. These

expectation values appear in nonzero (non total derivative) supersymmetry transformations
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of the fermions, so that the state breaks supersymmetry. Note that consistent N = 1 or

N = 0 compactifications to four dimensions include orientifolds which may project out half

or all of an N = 2 multiplet. However, if N = 1 supersymmetry survives to low energies,

the surviving closed string fields should descend from the original N = 2 theory via the

orientifold projection, and the surviving auxiliary fields in the N = 1 multiplets control

the SUSY-breaking terms of this more realistic model.

In [1, 2], the focus was on vector multiplets of the underlying type IIB d = 4, N = 2

model, and on hypermultiplets of type IIA. In this work we focus on the hypermultiplets

of type IIB (our results will also give the NS-NS auxiliary fields for the type IIA vector

multiplets). There are various off-shell extensions of N = 2 multiplets whose on-shell

bosons all have spin zero. However, there is a particular off-shell extension that appears

to be natural from the point of view of the string worldsheet. It follows from the N = 2

superspace formalism of refs. [39 – 42]. In this formalism, the anticommuting superspace

coordinates are a pair of spinor-valued Grassmann variables (θα, θ̂α) and their complex

conjugates (θ̄α̇,
ˆ̄θα̇). Each pair is a doublet of Weyl spinors under the SU(2)R symmetry

of d = 4, N = 2 supersymmetry. If we choose a direction in the doublet representation of

SU(2)R, the corresponding Weyl spinor is the superspace Grassmann variable of the N = 1

subalgebra of the N = 2 supersymmetry.

The doublet of Grassmann variables arises very naturally from the worldsheet [1, 2, 42].

For type II strings with N = (2, 2) worldsheet supersymmetry, currents for spacetime

supersymmetry can be constructed from both the left- and right-moving sectors of the

worldsheet [49, 50], leading to a natural decomposition of N = 2 spacetime supersymmetry

into two N = 1 subalgebras. The spacetime supersymmetries formed from the left- and

right-moving sectors of the worldsheet form an SU(2)R doublet; the SU(2)R symmetry is

nonperturbative on the worldsheet. As in [42], we take θ to be the superspace variable

corresponding to the N = 1 subgroup of the spacetime supersymmetry built from the left-

moving sector of the worldsheet, and θ̂ to be the superspace variable corresponding to the

N = 1 subgroup of the spacetime supersymmetry built from right-moving worldsheet fields.

The N = 2 superfield for a hypermultiplet is chiral with respect to the left mov-

ing supersymmetry and anti-chiral with respect to the right-moving supersymmetry. Its

expansion in the superspace Grassman variables is:

Ha = wa + θαχa
α + ˆ̄θβ̇ ˆ̄χa

β̇
+ θ2ya + ˆ̄θ2 ˆ̄ya

+θα ˆ̄θβ̇σµ

αβ̇
F a

µ + θα ˆ̄θ2ηa
α + ˆ̄θβ̇θ2 ˆ̄ηa

β̇
+ θ2 ˆ̄θ2Ca . (2.1)

Here wa is a complex scalar, and Fµ = ∂µϕ
a, where ϕa is also a complex scalar; ya, ˆ̄ya and

Ca are auxiliary fields, and a simply labels the moduli and runs over the appropriate range

of values, i.e.,

a = 1, . . . , h(1,1) type IIB,

a = 1, . . . , h(1,2) type IIA, (2.2)

in a Calabi-Yau compactification.

– 5 –
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2.1.1 Hypermultiplets in type IIB

Consider type IIB string theory compactified on a Calabi-Yau manifold X, with {ωa}

a basis of H(1,1)(X). The Kähler form can be written as J = taωa, where the ta are

the real Kahler moduli of the compactification. Vacuum expectation values B = baωa

for the NS-NS 2-form potential also preserve spacetime supersymmetry. In this case we

define complexified Kähler moduli wa = ba + ita, which are again purely NS-NS fields.

Supersymmetry transformations act with a half unit of spectral flow, mapping the NS

sector to the R sector and vice-versa. Therefore, the field, ϕa in eq. (2.1) is an RR field,

and ya is an NS-NS auxiliary field. The field ϕa can be constructed as follows. The RR

two-form C(2) contributes massless modes via the decomposition C =
∑

a c
aωa. The RR

four-form C(4) gives four-dimensional two-form potentials dual to scalars, via the expansion

C(4) =
∑

a c̃
a
µνωa. We write ∂µϕ

a = ∂µc
a + i(∗dc̃a)µ.

The universal hypermultiplet, which includes the four-dimensional dilaton φ (not to be

confused with the RR scalars ϕa just discussed), arises in a different way. For this multiplet,

the natural complex NS-NS scalar is written wφ = a+ie−2φ, where the pseudoscalar a is the

four-dimensional dual of the NS-NS 2-form Bµν . However, the worldsheet naturally couples

to Bµν , not a. Correspondingly, in ref. [42], the dilaton has a different superfield description

than that described in eq. (2.1): one decomposes a real scalar N = 2 superfield into

superfields for the graviton and dilaton multiplets, and the NS-NS 2-form arises directly in

the latter. The corresponding auxiliary fields are Ramond-Ramond. However, from a four-

or ten-dimensional spacetime point of view, there is no problem in principle with writing the

dilaton multiplet in the form (2.1) with wφ as described, even if there is no obvious vertex

operator description of wφ. We will find a thus natural candidate for yφ from a spacetime

rather than worldsheet point of view. It would be interesting and important to construct

the auxiliary fields in the dilaton multiplet as presented in [42]. It may also be important to

understand the auxiliary fields in other off-shell presentations of the hypermultiplets, such

as the various multiplets that arise from projective superspace [51]. In particular, some

string compactifications in the literature — e.g. [52, 53] — have F-terms in the dilaton

hypermultiplets which are combinations of NS-NS and R-R fields, as we will discuss below.

In [42], the number of off-shell degrees of freedom in the multiplet (2.1) is reduced by

imposing additional reality conditions ∂2H = ∂̂2H = 0, where ∂, ∂̂ are defined in [42]. We

find that these constrain the components of H such that C∗ ∝ ∂2w, and ˆ̄y = y∗ (which is

slightly different from the condition written in [42]). In the discussion below, we will not

impose such conditions, so that y and ˆ̄y are independent. This is consistent with the type

IIA picture discussed in [1]. For example, a background with y = 0 and ˆ̄y 6= 0 corresponds

to a background with an N = 1 supersymmetry preserved (with Grassmann superspace

variables θ). A noncompact example is the solution of [54, 55], as discussed in [1].

2.2 Spacetime supersymmetry and G-structures

In ten dimensions, type IIB string theory contains two supercharges QN of the same

chirality. The supersymmetry transformations are parametrized by two ten-dimensional

positive-chirality Majorana-Weyl spinors ǫN , where N = 1, 2. For compactifications to

– 6 –
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four dimensions, we write (cf. ref. [10])

ǫN = ζN+ ⊗ ηN
− + ζN− ⊗ ηN

+ , (2.3)

where ζN± are four dimensional spinors, ηN
± six dimensional spinors, and the subscripts ±

denote four dimensional and six dimensional chirality, respectively.5

2.2.1 N = 2 supersymmetry and SU(3) × SU(3) structures

We begin by considering a compactification which is locally a smooth six dimensional man-

ifold M , which is well described by supergravity.6 Following [10, 18], we demand that the

full effective action (including all of the massive Kaluza-Klein and string modes) be invari-

ant under N = 2 supersymmetry. Note that this condition is compatible with the presence

of nonvanishing expectation values of auxiliary fields: the action is still invariant under

N = 2 supersymmetry, but the state with these expectation values is not. Expectation

values for the auxiliary fields break N = 2 to N = 1 or N = 0.

For the action of N = 2 supersymmetry to be well-defined, the spinors ηN must be

globally well-defined. When the solution is smooth and reliably described by supergravity,

one typically demands, as in [10, 18], that the spinors are also nowhere-vanishing. This

condition usually follows from the demand that for a supersymmetric background, the

spinor ηN be covariantly constant, which implies that its norm is constant.

When the supersymmetry is nonlinearly realized, and still described by a nowhere-

vanishing spinor, it is possible for the corresponding N = 2 supersymmetry to be broken at

a low scale compared to the Kaluza-Klein scale. Spinors that do vanish at points or at loci of

finite codimension cannot be covariantly constant, and in nonsingular geometric compactifi-

cations correspond to a broken supersymmetry in the set of local ten-dimensional supersym-

metries. We expect the energy scale of breaking to generically be the Kaluza-Klein scale.7

In the work described here, we have in mind the case that the N = 2 supersymmetry is

broken by expectation values of auxiliary fields at a low scale compared to the Kaluza-Klein

scale. We therefore consider backgrounds with two nowhere-vanishing spinors. For a spinor

to be globally well-defined, it must be invariant under the structure group G ⊂ Spin(6)

of the spinor bundle on M . Thus, the decomposition of the 4 of Spin(6) into irreducible

representations of G must contain a singlet. The generic (i.e. largest) structure group G

with these properties is SU(3). Each invariant, nowhere-vanishing spinor ηN defines an

SU(3) structure on the spinor bundle. (This structure group is inherited by the frame

bundle8 on M , so it is also possible to describe an SU(3) structure in terms of the frame

5The assigment of 6d chirality follows from the definition of the four-dimensional chirality operator as

γ5 = iγ0 . . . γ3 and the 6d chirality operator as in the appendix. Using the definitions of the 10d Clifford

algebra in eq. (2.2) of [10], then Γ11 = Γ0 . . .Γ9 = −γ5
(4d) ⊗ γ7

(6d).
6However, we will point out in section 3, section 6 that the vacua in truly compact SU(3) × SU(3)

structure models will generically have string-scale features; this is one of many dangerous games we play in

this paper.
7We thank D. Waldram and especially M. Graña for patient correspondence on these points.
8The frame bundle is defined by its sections: a local section of the frame bundle is a choice of vielbein

basis, i.e., a “frame” of six 1-forms (or vectors) on each open set U ∈M . Usually, there is no global section;

in the special case that one exists, there are six global 1-forms eA, and M is said to be parallizable.

– 7 –
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bundle without reference to spinors.)

Since the Spin(6) spinors η1
± and η2

± of eq. (2.3) need not be proportional to one

another, each generically defines an SU(3) structure distinct from the other. Thus, we

have two structures, SU(3)N , for N = 1, 2. This is natural from the point of view of the

worldsheet, as we discuss further below: the spinors η1 and η2 are generated from the

left- and right-moving sectors of the worldsheet, respectively. Each chiral sector of the

worldsheet has its own associated SU(3) structure.

It is possible to combine the two SU(3)N structures into a single SU(3)×SU(3) structure

in the “generalized complex geometry” of Hitchin et al [10, 56, 57]. In this case, the

generalized tangent space of interest is (a bundle extention of) T ⊕ T ∗(M), with structure

group SU(3)×SU(3). In this generalized geometry, the role played by the SU(3)N invariant

Spin(6) spinors ηN
± in the previous discussion is now played by SU(3)1 × SU(3)2 invariant

Spin(6, 6) pure spinors: Ω+ ∝ Re η1
+ ⊗ η2

+ of positive chirality and Ω− ∝ Re η1
+ ⊗ η2

−

of negative chirality. In this way of writing the pure spinors, SU(3)1 acts on the left

and SU(3)2 acts on the right. To reproduce the earlier discussion, all that is needed is a

projection from T ⊕ T ∗(M) to T (M). As described in ref. [57], there are two canonical

choices of this projection. One gives the group SU(3)1 associated to η1
±, and the other

gives the group SU(3)2 associated to η2
±.

These various ways of encoding SU(3) × SU(3) structure are closely related to the

various presentations of the “doubled torus” in [58] used to describe stringy torus fibrations.

(See, for example, [59] for a systematic discussion of this formalism.) In that work, one

replaces a T n factor (or fiber) in the target space with T 2n, on which the T-duality group

acts linearly. One may choose a polarization that splits this torus into two n-dimensional

factors. One choice is to split them into two T n factors described by left- or right-moving

chiral bosons on the worldsheet. This is analogous to the tack we will take in this paper.

Alternatively, one may split the doubled torus into a direct sum of the original torus and

its dual. This is closer in spirit to the discussion in [56, 57].

2.2.2 N = 4 supersymmetry and local versus global SU(2) structures

For a generic SU(3) × SU(3) structure, the spinors are locally independent, and are only

parallel at isolated points. If they are never parallel, then the two spinors define an

SU(2) structure. This allows one to define an N = 4 supersymmetry acting on the four-

dimensional theory, by reducing each of the ten-dimensional spinors ǫ1,2 on either of the

six-dimensional spinors η1,2.

If the spinors are parallel at points, there is a local but not a global SU(2) structure.

In principle, one could still reduce each of ǫ1,2 on either of η1,2 and so define an N = 4

supersymmetry. However, the fact that the spinors η1,2 coincide at points means that one

of the putative supercharges in the N = 4 algebra will come from a reduction on a spinor

which vanishes at specific points in the moduli space. As discussed above, this means that

the N = 4 supersymmetry will be broken to N ≤ 2, generically at the Kaluza-Klein scale.

2.3 Worldsheet vs. spacetime supersymmetry

N = 2 spacetime supersymmetry in four dimensions requires N = (2, 2) worldsheet super-

– 8 –
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symmetry for the c = 9 superconformal field theory describing the compact CFT [49, 50].

The SU(2)R doublet of supercharges in the (−1/2,−1/2) picture can be written as:

(

QL,α(z)

Q̂R,β(z̄)

)

=

(

e−φL/2Sα,LΣ̄L(z)

e−φR/2Sβ,RΣ̄R(z̄)

)

(2.4)

Here φL,R come from the bosonization of the superconformal ghosts, Sα are the spin

fields for the R4 sigma model factor of the CFT, and Σ̄L,R are the U(1) charge −3
2 spectral

flow operators for the c = 9 compact SCFT, mapping NS ↔ R. If the compact CFT is a

sigma model, then ΣL,R can be written as spin fields for the sigma model coordinates, and

transform in the spinor representation of Spin(6). Supersymmetry requires that this be a

singlet of SU(3) ⊂ SO(6). Thus there is a map between the spectral flow operators and

these spinors.

The standard example of a sigma model with N = (2, 2) worldsheet supersymmetry is

one with a Calabi-Yau target space M . In this case η1
± = η2

± = η± and ∇mη± = 0. The

Levi-Civita connection on M has SU(3) holonomy, and thus M is guaranteed to be Ricci-

flat and Kähler. This is not the most general possibility for N = (2, 2) sigma models [60].

In the presence of nonvanishing NS-NS three-form flux, N = (2, 2) supersymmetry is

preserved if there are two almost complex structures J± such that

∇µJ
ν
±λ ∓ 1

2

(

Hν
µρJ

ρ
±λ −Hρ

µλJ
ν
±ρ

)

= 0. (2.5)

Here, J+ and J− should be identified with J1 and J2 of section 2. If ψµ
L(z),

ψµ
R(z̄) are the left- and right-moving spacetime fermions polarized along M , then JL,R =

JL,R,µνψ
µ
L,Rψ

ν
L,R are the left and right moving worldsheet U(1)R currents in the N = (2, 2)

algebra. One may construct ΣL,R by bosonizing these U(1) currents, and these will be

mapped to spinors which satisfy

∇µη ±
1

8
HµνρΓ

νρη = 0, (2.6)

where the ± is correlated with the d = 10, N = 2 supersymmetry from which ηN descends

(i.e., + ↔ η1 and − ↔ η2). These backgrounds correspond to a particular class of SU(3)×

SU(3) structure compactifications. We are working with an off-shell presentation of the

hypermultiplets (2.1) for which the auxiliary fields are NS-NS. Other presentations may

involve RR fields. The RR flux would modify (2.5) and (2.6), and may break additional

supersymmetry. However, since we do not know how to treat RR backgrounds in the RNS

worldsheet formalism, we will not study these effects in this section (see [61]).

We will be particularly interested in cases where N = 2 spacetime supersymmetry is

broken. If the supersymmetry is broken by NS-NS deformations to N = 1 and the dilaton

does not become too large, the worldsheet supersymmetry is generically broken to N =

(2, 1); if spacetime supersymmetry is broken entirely then the worldsheet supersymmetry

is broken to N = (1, 1). It is also possible that supersymmetry is broken simply because

the physical states no longer satisfy the R-charge quantization rule described in [49, 50].

We believe that in terms of the N = 1 spacetime supersymmetry associated with this

– 9 –
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R-symmetry, this breaking will be through D-terms, as is true in the open string case [62].

Following that work, we expect the argument to run like this: the complex NS-NS scalars

are described by a vertex operator with U(1)R charge, and so a change of the R-charge

affects equally both real scalars in the spacetime multiplet. In particular the mass shifts

will be the same for both. This is characteristic of D-term breaking; F-term breaking leads

to mass splittings between scalars in chiral multiplets. The D-terms are auxiliary fields in

the vector multiplets. We leave verification of this scenario for future work. Meanwhile, the

statement that auxiliary fields in hypermultiplets break some of the N = (2, 2) worldsheet

supersymmetry is fully consistent with the results in this paper. In particular this typically

means that one or both of the U(1)R symmetries are broken.

The worldsheet manifestation of this is as follows. When spacetime supersymmetry is

broken through expectation values for the auxiliary fields y, ˆ̄y, the N = 2 transformations

will still act on the fields, albeit nonlinearly. On the worldsheet, we will find that the oper-

ators corresponding to y, ˆ̄y explicitly break the U(1)R charge. The R-current exists but no

longer satisfies (2.5); as we will describe below, the left hand side will contain torsion terms.

2.4 Review of SU(3) structure

The most general case that we are interested in has two SU(3) structures. To understand

them it is helpful to focus first on one SU(3) structure — this will also describe the well-

studied case in which the two SU(3) structures are parallel and can be made identical.

Manifolds with SU(3) structure can be classified by a set of intrinsic torsion classes.

These encode the failure of the corresponding positive and negative chirality spinors η± to

be covariantly constant with respect to the Levi-Civita connection:

∇mη± = (qm + iq̃mγ7)η± + iqmnγ
nη∓, (2.7)

where γ7 is the six-dimensional chirality operator, and q̃m, qm, qmn are determined by the

intrinsic torsion of the manifold [11].

Alternatively, one may define an almost complex structure via:9

Jmn = −iη̄±γmnγ7η±, (2.8)

where η†±η± = 1.10 The torsion classes measure the failure of J to be covariantly conserved.

A third description [8] is as follows: Define the two-form J with coefficients Jmn; this has

index structure (1, 1) with respect to the almost complex structure. Define also the (3, 0)

form Ω with coefficients

Ωmnp = −iη̄−γmnpη+ (2.9)

9See appendix A for a complete discussion of our normalization conventions.
10Note that our definitions and normalizations differ by factors of 2 from those given in [10, 18]. Our

definitions are consistent with the conventions given in appendix A. In particular there is a factor of 2

difference that appears in the Fierz identity given in appendix A.
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The torsion classes, which measure the deviation of the SU(3) structure manifold from

having (Levi-Civita) SU(3) holonomy, can then be defined as:

dJ = −
3

2
Im(W1Ω) +W4 ∧ J +W3

dΩ = W1J
2 +W2 ∧ J +W 5 ∧ Ω . (2.10)

Here W1 is a complex 0-form, W2 is a complex (1,1) form where W2 ∧ J is primitive

with respect to Jmn, W3 is a real primitive (2, 1)⊕ (1, 2) form,11 W4 is a real one-form, and

W5 is a (1, 0) form. Note also that dJ can include a (3, 0) ⊕ (0, 3) piece in addition to a

(1, 2)⊕(2, 1) component because the almost complex structure is generically not integrable.

Similarly, dΩ can include (2, 2) components. Using the Fierz identities given in appendix A,

we can define qm, q̃m and qmn in terms of the Wi.

Each of the Wi lives in a definite representation of the SU(3) structure group. Any

given representation is most easily found by noting that holomorphic indices (with respect

to the almost complex structure Jm
n) lie in the 3 of SU(3), while antiholomorphic indices

lie in the 3̄ of SU(3). Thus, W1 is a complex SU(3) singlet; W2 is a complex form in the 8

of SU(3); W3 in the 6⊕ 6̄ of SU(3); and W4,W5 lie in the 3 ⊕ 3̄ of SU(3).

Following [11 – 13, 15], we can similarly expand the 3-form H in this (J,Ω) basis as

H = −
3

2
Im(H1Ω) +H3 +H4 ∧ J, (2.11)

and we will find it useful to do so in the following sections. The Hk lie in the same

representations as Wk, for k = 1, 3, 4.

2.4.1 Intrinsic torsion and the spin connection

Our computations in section 3 will use the relationship between the intrinsic torsion and the

components of the spin connection decomposed according to the almost complex structure.

Given a vielbein {eA}, A = 1, . . . , 6, considered as a collection of one-forms, we define

a complex vielbein

ea = eA=2a−1 + ieA=2a

eā = eA=2a−1 − ieA=2a, (2.12)

where a = 1, 2, 3. In this basis [8]

J = igaāe
a ∧ eā

Ω = e1 ∧ e2 ∧ e3, (2.13)

where gaā = 1
2ηaā = 1

2δaā is the flat metric in complex coordinates. The 2-form J defines

an almost complex structure after raising one index with the inverse metric gāa.

Using the Cartan structure equations,

dea = −ωa
c ∧ e

c − ωa
c̄ ∧ e

c̄

= −ωb
a
ce

b ∧ ec − ωb̄
a
ce

b̄ ∧ ec − ωb
a
c̄e

b ∧ ec̄ − ωb̄
a
c̄e

b̄ ∧ ec̄ (2.14)

11A form ω is primitive with respect to J if ω ∧ J = 0.
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combined with (2.10) and (2.13), we can relate components of the spin connection with

specific complex indices to different intrinsic torsion classes. Specifically, we find that

W1 =
4

3
ǫāb̄c̄ωāb̄c̄ ; H1 = −

2i

9
ǫāb̄c̄Hāb̄c̄

(W2)ab̄ = iΩc̄d̄
aωc̄d̄b̄ −

i

3
gab̄Ω

c̄d̄f̄ωc̄d̄f̄ . (2.15)

(See also [63].) Note in particular that the totally antisymmetric part of ω will not

contribte to W2.

2.5 Review of SU(3) × SU(3) structure

We will find that for general values of the hypermultiplet auxiliary fields y and ˆ̄y, the

Spin(6) spinors ηN (N = 1, 2) are not parallel, so that we have two distinct SU(3) struc-

tures. Locally on M , the two spinors are independent almost everywhere, and may become

parallel only at isolated points. In a neighborhood in which the two spinors are everywhere

independent, the intersection SU(2) = SU(3)1 ∩ SU(3)2 defines a local SU(2) structure.

However, this intersection is enlarged to SU(3) at the special points where the two spinors

ηN become parallel. Therefore, globally, there are two SU(3) structures, but there is no

global SU(2) structure.

Given the doublet ηN , one may define a doublet of real 2-forms JN and a doublet of

complex three forms ΩN ,

JN
mn = −

i

2
η̄Nγmnγ7η

N and ΩN
mnp = −

i

2
η̄Nγmnp(1 + γ7)η

N . (2.16)

Here, the pair (JN ,ΩN ) provides an equivalent definition of the SU(3)N structure.

Accordingly we have a doublet WN
1 , . . . ,W

N
5 of the five torsion classes defined in eq. (2.10).

We will argue that N = 1, 2 correspond to y, ˆ̄y, respectively. Furthermore, for each SU(3)

structure, there is an almost complex structure with respect to which we can write a

vielbein with complex tangent frame indices. For each such almost complex structure, the

intrinsic torsion classes WN
k can be written in terms of the spin connection as in (2.15).

Instead of defining a doublet of SU(3)N torsion classes, one could instead define a

single set of SU(3)×SU(3) torsion classes; typically, one would define them in terms of the

pure spinors built from ηN
± , as in [11]. However, the two descriptions are equivalent, and

the formulation given here will be the most useful for our purposes.

3. Worldsheet vertex operators for auxiliary fields

In this section we will follow [1, 2] and use worldsheet techniques to compute y, ˆ̄y for Kähler

moduli in Calabi-Yau compactifications of type IIB string theory.

3.1 Worldsheet supersymmetry and target space geometry

Expectation values y 6= 0 or ˆ̄y 6= 0 break the left- or right-moving N = 2 superconformal

symmetries, respectively, down to N = 1. In particular, ˆ̄y 6= 0, y = 0, corresponds to a
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background with N = (2, 1) supersymmetry. This observation will be useful in interpreting

the vertex operator calculation.

A general N = (1, 1) worldsheet sigma model with NS-NS H-flux has the fermion

bilinear terms12

L = −igµνψ
µ
+D−ψ

ν
+ − igµνψ

µ
−D+ψ

ν
−

gµνψ
µ
±D∓ψ

ν
± ≡ gµνψ

µ
±∂∓ψ

ν
± + (gµνΓν

λρ ±
1
2Hµλρ)ψ

µ
±∂∓X

λψρ
± , (3.1)

where ψ− (ψ+) are left- (right)-moving worldsheet fermions. In addition, there are four-

fermion terms of the form R±ψψψψ where R± is curvature built from the connection

Γµ
±,νρ = Γµ

νρ ∓ 1
2H

µ
νρ. Worldsheet N = 2 supersymmetry for either the left or the right

movers requires the existence of a complex structure J− or J+, respectively, which satis-

fies (2.5) [64]. (If both J± satisfy (2.5), then the theory has N = (2, 2) supersymmetry).

This condition implies that the metric must be hermitian, the NS-NS three-form must be

of holomorphic type (2,1) with respect to the almost complex structure J+ or J−, and

Hijk̄ = ±Tijk̄ ≡ ±i(∂jgik̄ − ∂igjk̄) , (3.2)

where the sign in (3.2) is correlated with the sign ± in J±. (In the case of (2,2) supersym-

metry, the geometry is bihermitian.)

3.2 Vertex operators for auxiliary fields

Vertex operators for auxiliary fields y, ˆ̄y are calculated as follows [1, 2, 65, 66]. For ya,

we begin with the vertex operator for complexified Kähler modulus wa = ba + ita in the

(−1, 0) picture,

V
(−1,0)
wa = e−φ−(z)O1

2 ,1
(3.3)

where O1
2 ,1

has left-moving conformal dimension ∆ = 1
2 and right-moving conformal di-

mension ∆ = 1. Let Ω be the operator generating one unit of spectral flow (from NS to

NS) on the left-movers: for Calabi-Yau compactifications, it is Ω = Ωijkψ
i
−ψ

j
−ψ

k
−. The

vertex operator for ya is found via the OPE:

Ω(z)O1
2 ,1

(u) ∼
Vya

(z − u)
+ nonsingular. (3.4)

The vertex operator for ˆ̄y is constructed identically by exchanging left and right movers.

We are playing another dangerous game in writing such vertex operators, as they generally

do not correspond to propagating modes. Nonetheless, following [65, 66], they do appear

as coefficients of contact terms in certain OPEs, in precisely the fashion dictated by super-

symmetry.13 Furthermore, the identification of these fields with specific fluxes and torsion

classes on the manifold M matches the spacetime arguments we will provide in section 4

and section 5.

12See appendix A for our conventions for H .
13See [67] for a recent discussion of this in the context of open string theory.
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Kähler moduli wa correspond to (1, 1) forms δga
i̄. The (−1, 0) picture vertex operator

is:

V
(−1,0)
wa = e−φ−δga

īlψ
ī
−∂+X

l + e−φδga
il̄ψ

i
−∂+X

l̄. (3.5)

In order to compute the OPEs, we will expand around a constant background field X

in Riemannian normal coordinates, and pretend that we are working at large radius.14 The

scalars and fermions in this expansion have canonical kinetic terms, making a perturbative

calculation of the OPEs straightforward. Let the vielbein be emµ , with m = 1, . . . 6 the frame

indices, which can be organized into holomorphic and antiholomorphic indices a, ā = 1, . . . 3

by the almost complex structure, as discussed in section 2.4 above. Following the discussion

and notation of [68], we denote the components of the bosonic fluctuation relative to the

vielbein basis by ξm, with fermionic superpartners ψm = enµψ
µ. The quadratic fermion

kinetic terms (3.1) become

L = −iηmnψ
m
+D−ψ

n
+ − iηmnψ

m
−D+ψ

n
−

ηmnψ
m
±D∓ψ

n
± ≡ ψm

±

[

ηmn∂∓ψ
n
± +

(

ωmnp ±
1
2Hmnp

)

ψn
±∂∓ξ

p
]

, (3.6)

where ωm
n

p = eµmωµ
n

p is the spin connection on M with the 1-form index converted to the

vielbein basis.

Let δgij̄ be a deformation of the Kähler structure of the metric, corresponding to the

scalar w in a hypermultiplet. The corresponding (−1, 0)-picture vertex operator is

V (−1,0)
w = e−φδgābψ

ā
−∂+ξ

b + e−φδgab̄ψ
a
−∂+ξ

b̄ , (3.7)

where δgab̄ ≡ δgi̄ e
i
ae

̄
b. Here and below, we have suppressed the upper index a on w and

δg to avoid confusion with the complex vielbein indices a, ā.

The spectral flow operator is:

Ω(z) ≡
1

3!
Ωijkψ

i
−ψ

j
−ψ

k
− =

1

6
ǫabcψ

a
−ψ

b
−ψ

c
−. (3.8)

Using the operator product expansions ψā
−ψ

b
− ∼ ηāb and ψa

−ψ
b
− ∼ 0, we find that

V (0,0)
y = δgācg

ādΩdabψ
a
−ψ

b
−∂+ξ

c, (3.9)

and similarly,

V
(0,0)
ˆ̄y

= δgac̄g
ad̄Ω̄d̄āb̄ψ

ā
+ψ

b̄
+∂−ξ

c̄, (3.10)

with similar expressions when iδgi̄ is replaced by δ(B + ig)i̄. We interpret these vertex

operators as deformations of the Lagrangian (3.6). Due to the appearance of Ωdab and

Ω̄d̄āb̄ in the expressions for Vy and Vˆ̄y, the quantity ω ± 1
2H in (3.6) is deformed by purely

(3, 0) and (0, 3) components δω± 1
2δH. Note that H is automatically antisymmetric in all

indices. The definition of ωabc guarantees that it is antisymmetric in b and c; the fermion

couplings in (3.6), (3.9) and (3.10) are consistent with this.

We have not performed the analogous computation for the universal hypermultiplet

yφ. Instead, will deduce the corresponding auxiliary field from spacetime considerations in

sections 4 and 5.

14As noted above, this is very dangerous.
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3.3 Target space interpretation

Following [1, 2], our goal is to interpret the results of the previous subsection in terms of

known fluxes and target space structures. We will begin by organizing the results according

to the amount of broken worldsheet supersymmetry. At the end of this subsection we will

then identify the auxiliary fields in terms of intrinsic torsion classes for string backgrounds

with local SU(3) × SU(3) structure.

The basic results are as follows. We wish to describe independent deformations of

the two auxiliary fields y, ˆ̄y. In type IIA compactifications, y and ˆ̄y can be independently

tuned, while staying within the class of manifolds with SU(3) structure and H-flux of

the type W3,4 in (2.10) and H3,4 in (2.11). This is because the torsion and H-flux can be

adjusted independently, and the H-flux couples with opposite sign to left- and right-moving

worldsheet fermions.

However, for type IIB compactifications, we will see that there are a class of auxiliary

fields for which the H-flux does not contribute; the deformations are entirely geometric.

The fields y, ˆ̄y must correspond to different geometric structures coupling to the left and

right movers. Each defines an SU(3) structure. Thus, we expect that the compactifications

with y, ˆ̄y 6= 0 are locally manifolds with SU(3)× SU(3) structure. On the other hand, geo-

metric deformations couple identically to left and right movers, and the only way to enforce

the statement that a given SU(3) structure couples chirally is if the local patches of the com-

pactification are glued together with transformations which act chirally. These transforma-

tions cannot be diffeomorphisms — they must involve nontrivial reshufflings of string the-

oretic degrees of freedom, as does T-duality. Therefore, the generic manifold with either or

both of y, ˆ̄y must be a nongeometric compactification along the lines of [26 – 28, 30, 58, 69].

3.3.1 N = (2, 2) supersymmetry

In case of N = (2, 2) supersymmetry, we require that the spin connection and NS-NS

three-form, both with lowered vielbein indices, have no (3, 0) or (0, 3) components. This

follows from the fact that the torsion is a derivative of the metric g, with g ∼ ∂∂̄K for a

real potential K, as required by supersymmetry. Therefore, if N = (2, 2) supersymmetry

is to be preserved, a deformation of the form (3.9) must be accompanied by a change in

the almost complex structure.

If the deformation contains no H flux, the resulting background is a Calabi-Yau back-

ground. If the deformation has H 6= 0, then there must be two almost complex structures

satisfying (2.5). The resulting six-dimensional background will no longer have SU(3) holon-

omy, but instead an SU(3) × SU(3) structure. As discussed in section 2.3, the two almost

complex structures satisfying (2.5) allow one to construct two conserved U(1)R charges on

the worldsheet, which are part of the N = (2, 2) superconformal algebra.15

When N = (2, 2) supersymmetry is preserved, as long as the U(1)R charge of physical

states remains appropriately quantized, we have not broken the spacetime supersymmetry.

15One could also attempt to construct two non-conserved U(1)R currents, JL,µνψ
µ
Rψ

ν
R and JR,µνψ

µ
Lψ

ν
L.

These can be bosonized and used to construct additional non-conserved spacetime supercharges in an N = 4

algebra. We expect the corresponding supersymmetries to be broken at the Kaluza-Klein scale.

– 15 –



J
H
E
P
0
7
(
2
0
0
8
)
0
4
2

Given the assumption that violating the R-charge quantization rule of [49, 50] corresponds

to turning on auxiliary fields in vector multiplets, backgrounds corresponding to y 6= 0

and/or ˆ̄y 6= 0 must correspond to backgrounds with reduced worldsheet supersymmetry.

3.3.2 N = (2, 1) supersymmetry

A background for which y = 0 and ˆ̄y 6= 0 (and the auxiliary fields of the complex structure

moduli vanish) will preserve N = 1 spacetime supersymmetry. This requires N = (2, 1)

supersymmetry on the worldsheet [49, 50].

The Kähler deformations and deformations of the auxiliary fields can be classified

according to their representations with respect to the SU(3) structure group. The holo-

morphic and antiholomorphic indices of tensors on the target space transform in the 3

and 3̄ representations, respectively, of this SU(3). Kähler deformations of the metric gij̄

preserve the complex index structure. The metric gi̄ itself transforms as a singlet. Follow-

ing [10], we can use Lefschetz decomposition to parametrize Kähler deformations according

to their SU(3) representations:

δgij̄ = t1gij̄ + (K8)i̄ ≡ t1gij̄ + ta
8
(ω8 a)i̄. (3.11)

Here t1 is a rescaling of the overall volume and transforms as an SU(3) singlet. The

primitive 2-form K8 transforms in the 8 of SU(3), and the primitive 2-forms ω8 a =

(ω8 a)i̄dz
i ∧ dz̄̄ for a = 1, . . . , h1,1 − 1 are a basis of the elements of H(1,1)(M) which

each transform in the 8 of SU(3).

The quantity Ωijk is an SU(3) singlet. Therefore eqs. (3.9) and (3.10) imply that

the auxiliary fields y, ˆ̄y transform under the same SU(3) representation as the Kähler

deformation in the same supermultiplet.

Let us first consider the auxiliary partners y8 of deformations of type K8. Since

H is totally antisymmetric, a totally holomorphic deformation lies in a singlet of SU(3).

Therefore y8 corresponds to a deformation of the spin connection only. It is clear that the

deformation (3.9) will break the left-moving N = 2 by breaking the U(1)R charge. However,

the spin connection couples with the same sign to both the left- and right-moving fermions.

In order that the deformation preserve the right-moving N = 2, there must be another

complex structure J+ = JCY + δJ+ under which the deformation (3.9) is no longer (3, 0),

and which generates a conserved right-moving U(1)R charge J+ = J+µνψ
µ
+ψ

ν
+.

At this point we have a puzzle. If the background described by y8 6= 0 is a manifold,

nothing prevents us from defining a conserved left moving U(1)R current J̃− = J+µνψ
µ
−ψ

ν
−

and restoring N = (2, 2) worldsheet supersymmetry as well as N = 2 spacetime supersym-

metry. The only possible problem is if the global structure of the compactification is such

that J̃− is not well defined. This requires transition functions on the target space of the

sigma model which act differently on the left- and right-moving worldsheet fermions. This

is only possible in a locally geometric background if the worldsheet fields describing differ-

ent geometric patches are related by “stringy” transformations rather than just spacetime

diffeomorphisms. When the background is locally a torus fibration, T-duality on the fibers

is a classic example of such a transformation. We will sketch a more explicit example below.
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In summary, for y8 6= 0, ˆ̄y8 = 0 there are either one or two almost complex structures.

The original complex structure generates a left-moving U(1)R that is explicitly broken and

may or may not be globally defined when coupled to either the left-movers or the right-

movers. There must be a deformed complex structure which is globally well-defined when

coupled to the right-movers, and is not globally well-defined when coupled to the left-

movers. The result is a background which is locally described as having an SU(3)× SU(3)

structure; globally it is not a manifold, and the left-moving U(1)R is either broken or not

globally defined. This is consistent with the observation in [18] that compactifications

on manifolds with SU(3) × SU(3) structure are typically “nongeometric”. Note again

that our methods do not seem to include the totally nongeometric flux discussed in [19,

20]. We believe that this is because we are considering a geometric starting point, and

studying small deformations. In this sense, backgrounds that are locally nongeometric

should correspond to some kind of large deformation; it would be interesting to make this

idea more precise.

Next, consider the auxiliary field y1 that is the superpartner of the volume deforma-

tion. In this case, the corresponding deformation (3.9) of the worldsheet can be made up

of both the spin connection ω and the torsion H. As above, this preserves N = (2, 1) su-

persymmetry if an almost complex structure J+ exists which is covariantly conserved with

respect to the torsionful connection Γ− = Γ− 1
2H, (where Γ is the Levi-Civita connection)

and with respect to which the metric is Hermitian [64, 60].

If H 6= 0, the right-moving current J̃− = J+µνψ
µ
−ψ

ν
− will not be conserved; this

would require that
[(

∂ + (Γ + 1
2H)

)

J+

]

µνλ
= 0, which is incompatible with the left-moving

current being conserved. In this case it is possible that the background is globally a

manifold with SU(3) × SU(3) structure, without nongeometric features. Alternatively, J̃−
may not be globally well-defined, and we have the same situation as y8 6= 0 discussed above.

3.3.3 N = (1, 1) supersymmetry

Worldsheet supersymmetry by itself imposes no serious constraints in this case. The

deformations can lie in the subset of deformations with SU(3) structure, as long as the

complex structure is not conserved with either connection Γ±. To be able to tune y, ˆ̄y

independently, we must be in the class of compactifications that have a local SU(3)×SU(3)

structure; for y8, ˆ̄y8 to be independently tuneable, the backgrounds must presumably be

globally nongeometric.

3.3.4 Auxiliary fields and torsion classes

We have shown that general values of y, ˆ̄y correspond to compactifications with local

SU(3) × SU(3) structure. The coupling of the left- and right-moving fermions will be

described by the almost complex structures J± defining the two SU(3) structures indepen-

dently. Using eqs. (2.15), (3.9), and (3.10), we find that

W
1
1 + 3iH

1
1 = y1

W
1
2,ab̄ = −8i

∑

I

yI
8ω

I
ab̄ (3.12)
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and

W 2
1 + 3iH2

1 = ˆ̄y1

W 2
2,ab̄ = −8i

∑

I

ˆ̄yI
8ω

I
ab̄ (3.13)

Note that since we are taking our auxiliary fields to be constant vevs, these equations

imply that W1 and H1 are constant. This seems to imply, by (2.10), that J ∧ J is exact

(when all the other torsion classes are turned off), which is not true for compact Calabi-Yau

backgrounds. In a noncompact model, J ∧ J can be exact (for example, in flat space). At

any rate we only expect to be allowed to turn on a small amount of torsion and flux in

noncompact models.

3.4 SU(3) structure compactifications

String compactifications on manifolds with SU(3) structure have been intensively studied

in the last several years. Here we see how these fit into our framework. In these cases,

W 1
k = W 2

k = Wk, and H1
k = H2

k = Hk. We can see instantly from eqs. (3.13) and (3.12)

that this means that y8, ˆ̄y8 are complex conjugates.

Because one can deform the metric and the H-flux independently, we may still sepa-

rately dial y1, ˆ̄y1. One might be tempted to conclude that since we can set y1 6= 0, ˆ̄y1 6= 0,

there is a class of SU(3) structure compactifications with W1 6= 0 which is compatible

with spacetime supersymmetry. However, we will see in section 4 that the auxiliary field

for the universal (dilaton) hypermultiplet is a different linear combination of W1 and H1.

Therefore, if y1 6= 0 and ˆ̄y1 = 0, the auxiliary field ˆ̄yφ in the universal hypermultiplet

will still be nonzero. This matches the known fact that half-flat manifolds in type IIB are

incompatible with spacetime supersymmetry (see [70] and references therein).

3.5 Nongeometric compactifications

We have shown that typical compactifications with y8 6= 0 should have “nongeometric”

features, in which the transition functions on different coordinate patches act chirally on

the fermions. Our argument was based on the requirement that despite the existence of

a well-defined left-moving U(1)R current constructed from an almost complex structure,

there should be no well-defined right-moving U(1)R current constructed from the same

almost complex structure. We will sketch a scenario in which this can occur, to make our

reasoning clearer.

Consider a compactification that is locally a complex manifold with a Lagrangian T 3

fibration. This fibration will have monodromies as one encircles singular loci of the fibration

on the base B [16, 71, 72]. For a purely geometric fibration, such as a Calabi-Yau [71] or

a manifold with “geometric flux” [16, 20, 73, 74], the monodromy will lie in the group

GL(3,Z) of discrete diffeomorphisms.

More generally, this monodromy can lie in the full duality group of T 3. We will restrict

ourselves (arbitrarily) to the perturbative duality group O(3, 3;Z). Such backgrounds are

often known as “T-folds”; various examples have been discussed in [26 – 31]
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Imagine that the monodromy about some loop is a non-trivial T-duality acting on two

1-cycles of the torus, much as in the example discussed in [73]. Let the coordinates yi be

the coordinates on the T 3 and xi be coordinates on the base B3, such that zi = xi + iyi,

for i = 1, 2, 3. If the T-duality in the monodromy discussed above acts on y2,3, then it will

act on the fermions as

ψy2,3

± → ±ψy2,3

± (3.14)

and all other worldsheet fermions lying along the compactification directions will not trans-

form. If we write the fermions in complex coordinates, then the monodromy will act as:

ψzi

+ → ψzi

+

ψz1

− → ψz1

−

ψz2,3

− → ψz̄2,3

− (3.15)

Now, suppose that

J+ =

3
∑

i=1

ψzi

+ψ
z̄i

+ (3.16)

is a globally well defined operator — in other words, it will be preserved under monodromy

transformations arising from loops in B3 about the singular loci of the fibration. (The

operator is certainly invariant under the monodromy action above). It may seem natural

to define a left-moving U(1)R current

J− =

3
∑

i=1

ψzi

−ψ
z̄i

− (3.17)

but this is not globally well-defined, as the monodromy action on J− is

J− = ψz1

− ψ
z̄1

− + ψz2

− ψ
z̄2

− + ψz3

− ψ
z̄3

− → ψz1

− ψ
z̄1

− − ψz2

− ψ
z̄2

− − ψz3

− ψ
z̄3

− (3.18)

In general, only a monodromy action which includes a T-duality transformation will

act chirally on the fermions in this way. A more global analysis is required to see if a

different left-moving U(1)R charge is globally defined, and whether it is conserved; if no

such conserved current exists, then one can have an N = (1, 2) compactification without

H-flux, as seems to appear when only the y8 auxiliary fields are turned on.

3.6 Mirror symmetry

One goal of this paper is to understand mirror symmetry for compactifications with H-flux.

Here we argue that our results confirm previous statements [11, 10, 19, 20] that the mirrors

of such compactifications are compactifications with local SU(3) × SU(3) structure, which

are often T-folds.

The first argument arises from the four-dimensional effective action. Consider a type

IIA compactification with nonvanishing auxiliary fields for the hypermultiplets, which are

complex structure deformations. In [1, 2], these auxiliary fields were shown to be combi-

nations of H-flux of type H3,4 and torsion of type W3,4, according to the definitions (2.10)
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and (2.11). Mirror symmetry should leave the variables of the four-dimensional effective

action invariant. Thus, we expect that the mirror of such combinations of flux and torsion

to be auxiliary fields of type y1, y8̄, which are related to the Kähler moduli.

The essence of this argument is that if mirror symmetry holds for Calabi-Yau back-

grounds, it holds for deformations of Calabi-Yau backgrounds, as long as one understands

the mirror map acting on deformations of the theory. Of course this is dangerous; we are

assuming that compactifications of the type we care about can be considered as connected

in field space to an N = 2 compactification, and that mirror symmetry remains valid for

off-shell deformations. Since we expect mirror symmetry to hold for all correlation func-

tions (which can be used to define an effective potential, at least in a power series about a

given point in field space) the assumption is not obviously wrong.

The second argument arises from the worldsheet point of view. From this standpoint

the reader might sensibly object that the cases we have in mind have at most N = 1

spacetime supersymmetry and therefore at most N = (2, 1) worldsheet supersymmetry.

The conformal field theory explanation of mirror symmetry uses the structure of the N =

(2, 2) superconformal algebra: namely, one simply reverses the sign of the right-moving

U(1)R current relative to the left moving U(1)R current.

However, we do not believe that this poses an obstacle to defining mirror symmetry

from the worldsheet point of view, at least if the IIA compactification is a manifold with H-

flux. Such type IIA compactifications with y 6= 0 still have a right-moving U(1)R current

J̃+ which exists but is not conserved: take the almost complex structure J−µν used to

define the left-moving U(1)R current, and write J̃+ = J−µνψ
µ
+ψ

ν
+. It still makes sense to

reverse the sign of this non-conserved U(1)R. In the IIB mirror, while the local almost

complex structure defining the left moving U(1)R cannot be used to construct a globally

well defined right-moving U(1)R current, there would be a different local almost complex

structure which leads to a globally defined but nonconserved right-moving U(1)R current.

4. Ten-dimensional supergravity calculation of auxiliary fields

In this section, we will calculate the auxiliary fields using ten dimensional supergravity, by

studying the supersymmetry variations of the fermions in the hypermultiplets directly. The

four-dimensional supersymmetry transformations are (2.3), with ηN the nowhere-vanishing

spinors defining the SU(3)×SU(3) structure, and η1 = η2 for Calabi-Yau backgrounds. For

the Kähler moduli, this calculation should be essentially identical to the calculations in sec-

tion 3 — after all, the formula (3.4) essentially implements two spacetime supersymmetry

transformation on the worldsheet vertex operator for the scalar in the multiplet [65, 66].

One difference will be that in this section we also consider auxiliary fields for the universal

hypermultiplet, with a superfield expansion as given in (2.1). It would be worthwhile to do

the same calculation for the auxiliary fields that arise in the presentation of [42], or for other

off-shell hypermultiplets. Additionally, now that we are no longer confined to a worldsheet

description, one could include RR fluxes (as in [10]). We expect these fields will show up as

additional contributions to the auxiliary fields; an argument that the RR 0-form appears
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in such a manner for vector multiplets was given in [1, 2]. They will also appear in other

off-shell representations of the hypermultiplets. We leave this exercise for future work.

We now proceed to calculate y1, y8, and the auxiliary field yφ for the universal hyper-

multiplet, in turn.

4.1 Auxiliary field for the volume deformation y1

For a general Kähler deformation (3.11) of the Calabi-Yau metric away from a fixed metric

gij̄ , the rescaling t1 of the volume can be picked out by contracting δg with g ,

t1 =
1

3
gij̄δgij̄ . (4.1)

Since the trace will select out a variation that is proportional to δg, it will be indepen-

dent of the internal coordinates.

We will work in ten-dimensional string frame, to more easily match the worldsheet

calculation of the previous section. The supersymmetry variation of δg implies that the

fermionic superpartner is:

χN
1± =

i

3
(ηN

± )†γ īΨN
ī (4.2)

where the ± subscripts for χ denote four-dimensional chirality, ΨN
m are the two

ten-dimensional gravitinos polarized along M , and we have used δǫN (δgmn) =

iǭN (ΓmΨN
n + ΓnΨN

m). The bosonic part of the supersymmetry variation of χ1 will

come entirely from the supersymmetry variation of Ψm in (4.2). These are given

in [75, 76].16 Let yN=1
1

= y1 and yN=2
1

= ˆ̄y1. The supersymmetry variation of ψ1,+ with

respect to an infinitesimal parameter ζ is:

δχN
1+ = ζN+ ⊗ yN

1 + · · ·

=
i

3
ζN+ ⊗ (ηN

+ )†γm

(

Dm + (−1)N
1

8
HmBCγ

BC

)

ηN
− + · · · (4.3)

where Dmη = ∂mη + 1
4ωmABγ

ABη and capital letters A,B, . . . run over all six internal

indices.

Now, using (2.7), we find that

y1 =
i

3

[

iqmn(η†+γ
mγnη+) −

1

8
η†+γ

mγBCHmBCη−

]

(4.4)

The specific expressions for q are given in [13, 15]. (qm, q̃m do not contribute be-

cause they multiply the wrong chirality). Using (2.8), the first term on the left hand side

of (4.4) will project on the SU(3) singlet part of qmn. The result, combined with (2.9),

confirms (3.12), (3.13) precisely for y1, ˆ̄y1, up to an overall prefactor.

16Note that the subscripts ± in appendix B of ref. [76] label the two supersymmetries of type IIB super-

gravity.
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4.2 Auxiliary fields y8 for remaining Kähler moduli

For a general deformation of the metric ∆gmn polarized along the internal directions, the

fermion partner under the supersymmetry deformation can be computed using the ten-

dimensional supersymmetry algebra:

χN
(mn),± =

(

ηN
±

)† (
γmΨN

n + γnΨN
m

)

. (4.5)

Note that these are not yet four-dimensional fields in the usual sense; ∆g and ψ depend

on the coordinates of M . For a particular four-dimensional scalar arising from reducing

the metric on a particular internal wavefunction, we would reduce the fermion as well.

To find the auxiliary field y for such a deformation, we compute δχ1
+ and find that:

y1
(mn) =

(

iδ(m
p − J(m

p
)

qn)p − iΩ(m
pqHn)pq (4.6)

Again, y1
(mn) as defined is not yet a four-dimensional field in the usual sense.

Now, if we are interested in the auxiliary fields for ∆gij̄ = tI
8
ωI

ij̄
, with ωI a basis

of primitive harmonic (1, 1) forms, we should expand y1 = y in the same basis. Fol-

lowing [13, 15], H has terms transforming in the 1, 3, 6, and conjugates, and will not

contribute. The only term in qmn transforming in the 8 is proportional to W2, and the

result confirms (3.12), (3.13) for y8.

4.3 Auxiliary field yφ for the universal hypermultiplet

The real part of the scalar field in the universal hypermultiplet is the four-dimensional

dilaton φ4 = φ10 −
1
2 lnV. Since ∆V = 3∆t1V, we find that the four-dimensional dilatino

is, in string frame

λφ4,N
± =

(

ηN
±

)†
λφ10,N −

3

2
χN

1,± (4.7)

Using the variations given in [75, 76], we find that

yφ4 = −
3i

4

(

W̄ 1
1 + iH̄1

1

)

ˆ̄yφ4 = −
3i

4

(

W 2
1 − iH2

1

)

(4.8)

As an application of this result, recall that in section 3.4, we commented that even

though one can set y1 = 0 in the set of compactifications with SU(3) structure (for which

H1
1 = H2

1 = H1, W
1
1 = W 2

1 = W1), we expect that supersymmetry is broken if W1,H1 6= 0.

This is because y1 and yφ4 are independent linear combinations of W̄1, H̄1, and can both

vanish only if W1,H1 = 0.

This is very close to the results in [52, 53], which find that the F-term for the dilaton

is a combination of the (3, 0) components of the NS-NS and R-R 3-form field strengths.

We find a purely NS-NS deformation because we are studying auxiliary fields which break

a different N = 1 subgroup of the N = 2 supersymmetry.
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5. Four-dimensional Supergravity calculation of auxiliary fields

In this section we check our results in section 3.4 against the superpotential for SU(3)

structure compactifications proposed by [10]. Closely related and complementary results

were obtained in [63].

5.1 Superpotential for SU(3) structure compactifications

Graña et. al. [10] computed the N = 2 Killing prepotential and the superpotential for an

arbitrary N = 1 subalgebra of the N = 2 symmetry of the effective action, for compacti-

fications with SU(3) × SU(3) structure. We will specialize to the case of SU(3) structure

with one or more of W1,2 and H1 6= 0, and focus on the N = 1 subalgebras generated by

the left- and right-movers on the worldsheet.

As we have pointed out in the previous two sections, SU(3) structure compactifications

of this type break supersymmetry completely. In order to check our previous formulae,

we will choose one of the N = 1 subalgebras and use the results of [10], who extract

the corresponding superpotential from the prepotentials. For example, we can choose a

superpotential W for the N = 1 supersymmetry corresponding to the superspace directions

θ; this implies a nonvanishing expectation value of ˆ̄y. The auxiliary field y of the N = 2

hypermultiplet becomes the auxiliary field for the N = 1 chiral multiplet

wa + θχa + θ2ya (5.1)

We can determine y by computing the Kähler covariant derivative of W̄ :

FA = −eK/2m2
p,4Kab̄Db̄W̄ , (5.2)

where K is the Kähler potential, and Kab̄ is the inverse of Kab̄ = ∂a∂b̄K, and mp,4 is the

four-dimensional Planck mass. The Kähler covariant derivative is:

DaW = ∂aW +
1

m2
p,4

W∂aK . (5.3)

The results of [10] can be summarized as follows. Let us denote Kähler and complex

structure moduli by t and u, respectively. Define

W (t, u) = im3
p,4

∫

(B + iJ) ∧ dΩ and W̃ (t̄, u) = −im3
p,4

∫

(B − iJ) ∧ dΩ. (5.4)

where we assume that all geometric quantities in the integral are given in string units,

and the dimensionful factor in front is the correct one for the four-dimensioinal effective

action (cf. the appendix of [77]).17 Specializing to the case of SU(3) structure, the results

of [10] (cf. eqs. (2.148) and (2.149)) imply that the N = 1 superpotentials for the N = 1

subalgebras generated by left- and right-moving supersymmetries, respectively, are:

WIIB(t, u) = W (t, u), ŴIIB(t̄, u) = W̃ (t̄, u) . (5.5)

17In our noncompact case, one might worry about the convergence of (5.4). To avoid such problems, we

should think cutting off the large-volume part of our Calabi-Yau and gluing it into a compact space, taking

appropriate care with boundary conditions. We leave such questions to future work.
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These can be checked by matching the coefficients of the H-flux in the gravitino and

dilatino variations, between variations of the string frame fields in [75, 76] on the one hand

and the variations of the Einstein frame fields in [10].

For pertubations away from a Calabi-Yau geometry, these formulae deserve a word of

interpretation. We wish to split variations of B, J into:

B = BCY +Bt

J = JCY + Jt (5.6)

Here JCY, BCY correspond to the Kähler form and NS-NS 2-form for the underlying

Calabi-Yau compactification — in particular we take them to carry all of the dependence

on the Kähler moduli, and dBCY = dJCY = 0. Bt, Jt are not closed — dBt = H, and dJt

is a proportional to the intrinsic torsion. Similarly, we will write Ω = ΩCY + Ωt, where

ΩCY is closed and dΩt is proportional to various intrinsic torsion classes. In particular, if

we assume the intrinsic torsion and H are small, then we can write

dJt =
3i

4

(

W1Ω̄CY − W̄1ΩCY

)

+W4 ∧ JCY +W3

dBt = Ht =
3i

4

(

H1Ω̄CY − H̄1ΩCY

)

+H4 ∧ JCY +H3

dΩt = W1J
2
CY +W2 ∧ JCY + W̄5 ∧ ΩCY. (5.7)

Note that this decomposition into a background and deformation is only valid for a

noncompact Calabi-Yau, where we are allowed to locally turn on small amounts of torsion.

In general, such a decomposition would not be sensible.

Let us consider the N = 1 algebra generated by the left-movers, with superpotentialW .

The N = 1 Kähler potential is the sum of termsK1, K2 and K3 for the Kähler moduli, com-

plex structure moduli and dilaton, respectively. The Kähler potential for Kähler moduli is:

e−K1/m2
p,4 =

4

3

∫

J ∧ J ∧ J = 8V, (5.8)

where V is the volume of M in string units. The Kähler potential for complex structure

moduli is

e−K2/m2
p,4 = i

∫

Ω ∧ Ω̄ = 8V. (5.9)

where Ω is the canonically normalized (3,0)-form (Ωη in the notation of ref. [10]).18

Finally, the Kähler potential for the four-dimensional dilaton is:

e−K3/m2
p,4 = e−2φ4 = −

i

2
(τ − τ̄), (5.10)

where τ = a+ ie−2φ4 ’; a is the model-independent NS-NS axion dual to the NS-NS 2-form

in four dimensions; and φ4 is the four-dimensional dilaton.

18Canonically, 1
6
J3 = i

8
Ω ∧ Ω = Vol6, where Vol6 is the volume form. In the framework of ref. [10], the

Kähler and complex structure pure spinors are Ω+ = ce−B−iJ and Ω− = nΩ.
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5.2 Overall volume modulus: 1 of SU(3)

We consider the metric deformation t1 in the 1 of SU(3): that is, δJ = t1J . The complex

scalar in the chiral multiplet can be written as w = b + it1, where B = bJ . If we write

V = V (w − w̄), then

∂wV |w=0 = −∂w̄V |w=0 = −
3i

2
V . (5.11)

The relevant derivatives of the Kähler potential are:

K1,w̄ = −m2
p,4∂w̄ lnV = −

3i

2
m2

p,4

K1,ww̄ = −m2
p,4∂w∂w̄ lnV =

9

4
m2

p,4 (5.12)

We wish to calculate y1, using (5.2) with W = WIIB(t, u). The Kähler covariant

derivative of W̄ is:

Dw̄W̄ = −im3
p,4∂w̄

∫

(BCY − iJCY) ∧ dΩ̄t +
3

2
m3

p,4

∫

(Ht − idJt) ∧ Ω̄CY

= −im3
p,4

∫

JCY ∧ dΩ̄t +
3

2
m3

p,4

∫

(Ht − idJt) ∧ Ω̄CY

= −iW̄1

∫

J3 +
3

2

(

−3i

4

)

(

H̄1 − W̄1

)

∫

ΩCY ∧ Ω̄CY

= aV
(

W̄1 + 3iH̄1

)

(5.13)

where we have used J3
CY = 3i

4 ΩCY ∧ Ω̄CY (cf. [10]), and where a is a numerical constant.

The resulting auxiliary field is:

yw ≡ Fw ∝ eφ4mp,4

(

W̄1 + 3iH̄1

)

= ms

(

W̄1 + 3iH̄1

)

. (5.14)

This matches (3.12). Note the explicit factor of the string mass ms. The auxiliary

partner F of a dimensionless scalar will have mass dimension 1. The discussion of sec-

tion 3,section 4 was entirely in string frame; all of the lengths were measured in string

frame. The dimensions of superpartners arise from explicit powers of ms that appear in

the spacetime superalgebra in string frame.

5.3 Primitive Kähler moduli: 8 of SU(3)

We now consider arbitrary Kähler moduli wa in the 8 of SU(3), defined by B + iJ =
∑

a w
aωa, where ωa is a basis of H1,1. The derivatives of the Kähler potential are:

Ka = −
im2

p,4

4V

∫

ωa ∧ J
2,

Kab̄ = −
m2

p,4

4V

∫

ωa ∧ ωb ∧ J +
m2

p,4

16V 2

(
∫

ωa ∧ J
2

)(
∫

ωb ∧ J
2

)

, (5.15)

and the derivative of the superpotential is:

∂aW = im3
p,4

∫

ωa ∧ dΩ = im3
p,4

∫

ωa ∧ (W2 ∧ J +W1J
2) . (5.16)
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For Kähler moduli wa in the 8 of SU(3), the corresponding (1, 1) forms ωa are primitive.

so that ωa ∧ J
2 = 0. In this case,

Ka = 0, Kab̄ = −
m2

p,4

4V

∫

ωa ∧ ωb ∧ J and ∂aW = im3
p,4

∫

ωa ∧W2 ∧ J . (5.17)

Writing W̄2 = W̄ b
2ωb,

DāW̄ = 4iV Kābmp,4W̄
b
2 . (5.18)

so that

ya = c8e
φ4mp,4W̄

a
2 = c8msW̄

a
2 . (5.19)

where c8 is some complex numerical coefficient. Similarly,

ˆ̄y
a

= c∗8msW
a
2 . (5.20)

This confirms the results given in section 3 and section 4.

5.4 Universal hypermultiplet

Next, let us describe the auxiliary fields of the universal hypermultiplet. Since eq. (5.4) is

independent of the dilaton, we have DτW = KτW proportional to the superpotential. In

type IIB, we find that

yτ = cφ,1e
−φ4mp,4

(

H̄1 − iW̄1

)

,

ˆ̄yτ = c∗φe
−φ4mp,4 (H1 − iW1) . (5.21)

where cφ is a complex numerical constant. Now to compare this to previous sections, we

need to transform yτ to yφ, using φ = −1
2 ln[(τ − τ̄)/2i]. We find that

yτ = c̃φms

(

H̄1 − iW̄1

)

,

ˆ̄yτ = c̃∗φms (H1 − iW1) ., (5.22)

where c̃φ is some complex numerical coefficient. This matches the result in section 4.3.

5.5 Complex structure moduli: 6 of SU(3)

Finally, in order to tie the language of SU(3) structures to previous work [1, 2], we will

also compute the NS-NS auxiliary fields for the type IIB complex structure moduli.

Refs. [1, 2] showed that the auxiliary fields D++ corresponded to H and dJ lying

in H(2,1). From the complex structure moduli uA in the 6 of SU(3), we define a basis of

primitive (2,1) forms

χA = DAΩ = (∂A +KA)Ω. (5.23)

H and dJ can be expanded in this basis, as we will do.

In terms of the χA and their complex conjugates, the metric KĀB in the complex

structure moduli space is

KĀB = ∂̄Ā∂BK = −

∫

χB ∧ χ̄Ā
∫

Ω ∧ Ω̄
= −

i

8V

∫

χB ∧ χ̄Ā. (5.24)
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Writing the real 3-forms H3 and W3 as

H3 = HA
3 χA + H̄Ā

3 χ̄Ā and W3 = WA
3 χA + W̄ Ā

3 χ̄Ā, (5.25)

we can use (5.23), (5.2), and (5.4), to show that:

DA
++ = c6ms

(

H̄A
3 − iW̄A

3

)

and D̂A
−− = c6ms

(

H̄A
3 + iW̄A

3

)

. (5.26)

for the NS-NS auxiliary fields in the vector multiplets, where c6 is a complex numerical

constant. This is in precise agreement with the results in [1, 2].

6. Worldsheet instanton corrections

6.1 General remarks

Supergravity arguments have indicated that the mirror of compactifications with W3,H3 6=

0 involves intrinsic torsion classes in a locally SU(3)× SU(3) structure background [10, 11,

18]. While this identification is surely correct, we expect that supergravity will be a poor

approximation for such compactifications.19

One reason is that, as we have argued in section 3, nongeometric fluxes are generic

features of the compactification. The second reason arises from contemplating mirror

symmetry in its traditional setting, type II compactifications on Calabi-Yau backgrounds.

For compact models mirror symmetry only makes sense when worldsheet instantons are

included — indeed, the ability to compute instanton effects is to a large extent what made

mirror symmetry so exciting in the first place.

More precisely, let us consider type IIA string theory with expectation values for

auxiliary fields in the hypermultiplets. These will be described by NS-NS flux and torsion

of type H3 and W3 which, as mentioned in section 5.5, leads to a superpotential for complex

structure moduli. For a compact model the minimum of the corresponding potential is

generically deep in the interior of complex structure moduli space. If mirror symmetry is at

all valid, the mirror should have volumes of order the string scale, for which nonperturbative

worldsheet physics should become important.

Furthermore, recall that in local (noncompact) models, the superpotential for complex

structure moduli arises as a term breaking N = 2 supersymmetry to N = 1 supersym-

metry. For vector multiplet moduli, one expands the prepotential to first order in the

nonvanishing auxiliary field, and integrates out the superspace directions for the broken

supersymmetry, to obtain the superpotential [1, 2, 4, 6]. A similar calculation should hold

for the hypermultiplet moduli. While we leave this project for future work, we note that

the N = 2 action for the Kähler moduli will receive worldsheet instanton corrections, and

so we expect the superpotential to receive such corrections as well. Indeed, in ref. [14],

Gurrieri and Micu attempted to match the bosonic four-dimensional effective action for

type IIB string theory on a half-flat manifold to a type IIA compactification with NS-NS

19The astute reader will sensibly complain that this has not stopped us from doing supergravity calcula-

tions either. Again, for local models we have some hope of being on good footing; beyond that, we should

start from the worldsheet discussion in section 3.
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3-form flux. Close inspection of this paper reveals that in order for the actions match in

detail, coefficients of various terms in the type IIB effective action must include terms from

worldsheet instanton corrections.

6.2 One-instanton contribution to the superpotential

We wish to show that when one can perturb a Calabi-Yau background to an SU(3)-structure

background with intrinsic torsion of type W1,2, worldsheet instantons contribute to the

superpotential (for the N = 1 spacetime supersymmetry generated by either the left- or

right-moving worldsheet sector), with the one-instanton contribution entering precisely at

first order in W1,2.

We begin by reviewing the argument in [78, 79], that for string backgrounds with

N = (2, 2) worldsheet supersymmetry, the Kähler moduli do not get instanton-generated

superpotentials. We will adopt the specific arguments in [80] to our present purposes.

Assume that at least N = 1 spacetime supersymmetry is preserved, and arises from

the right-moving N = 2 worldsheet algebra (this could be secretly N = 2 supersymmetric,

or the U(1)R charges of the right-moving vertex operators could fail to satisfy the correct

quantization conditions [49, 50].) The supersymmmetry transformations generate super-

space translations along θ̂, and we will be studying antichiral superfields with respect to

this supersymmetry, to match the expansion in (2.1). If the Kähler moduli ta are the real

parts of scalar components φa of term of N = 1 superfields

Φa = φa + ˆ̄θψa + ˆ̄θ2 ˆ̄ya (6.1)

then a superpotential of the form W = φaΦbΦb leads to terms of the form φaφb ˆ̄yc in the low-

energy action, where ˆ̄yi is the auxiliary field. This term exists if the worldsheet correlator

A =
〈

V
(−1,−1)
φa V

(−1,−1)

φb V
(0,0)
ˆ̄yc

〉

(6.2)

where the superscripts refer to the superconformal ghost charge (or, the picture of the vertex

operator), and the subscripts to the corresponding spacetime fields. The zero-momentum

(−1,−1) picture scalar vertex operators are given in (3.5), and Vˆ̄y is shown in (3.10).

Therefore, there are six total worldsheet fermions appearing in (6.2). However, in the

one-instanton sector of two-dimensional N = (2, 2) theories, there are eight fermion zero

modes [78, 79]: four left-moving fermions, two with holomorphic spacetime indices and

two with antiholomorphic target space indices; and four right-moving fermions, again, two

with holomorphic spacetime indices and two with antiholomorphic spacetime indices.

Now imagine that we can slightly deform the Calabi-Yau metric such that the new

metric has torsion of the type W1,2. In particular imagine giving an expectation value to y

in (2.1). This means that the worldsheet action will contain a term of the form
∫

d2zV
(0,0)
y ,

with V
(0,0)
y given in (3.9). In a noncompact model it may be possible to keep the coefficient

small (in a compact model we might expect some kind of quantization, as is the case with

NS-NS flux, making it difficult to treat the torsion perturbatively). To first order in this

perturbation, the cubic term in the superpotential will be nonvanishing if the correlator

A1 =

〈

V
(−1,−1)
φi V

(−1,−1)
φj V

(0,0)
ˆ̄yk

∫

d2zV (0,0)
y

〉

(6.3)
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is nonvanishing. The form of the vertex operators indicates that there are terms in A1

corresponding to expectation values of eight worldsheet fermions with precisely the right

spacetime and worldsheet index structure to soak up the zero modes in the one-worldsheet-

instanton sector.

Of course, this computation is at best schematic, and valid for local models. It would

be interesting and important to describe worldsheet instantons and their effects directly in

compactifications with magnetic flux and SU(3) or SU(3) × SU(3) structures.

7. Conclusions

A principle lesson of this paper is that the string worldsheet provides a powerful organizing

principle for mathematical structures that describe N = 1 type II string backgrounds

with intrinsic torsion. Furthermore, it is a necessary organizing tool, since generically

such backgrounds will have string-scale features such as nongeometric fluxes, and physical

quantities will have contributions that are nonperturbative in α′.

However, an additional caveat is that in designing realistic string compactifications,

one typically includes Ramond-Ramond fields. In this case, one might have to appeal to a

formalism such as the one described in [81].

To our minds, further progress in these directions require the construction of more

explicit examples of string compactifications with these features. Such features can arise

either classically or be sourced by quantum effects. Some progress on classically stabilized

moduli, with auxiliary fields for both hypermultiplets and vector multiplets, has already

been made for type IIA vacua [82]. Another possibility would be to N = (2, 1) gauged

linear sigma models describing backgrounds with flux and torsion, taking the recent, elegant

construction [83] for (0, 2) models as a starting point.

To see how quantum effects might generate the features described in this paper, we note

that superpotentials generated by open string gauge theory effects or by D-instantons will

generically depend on the Kähler moduli and on the dilaton. If supersymmetry is broken

by such F-terms, the auxiliary fields we have described here should be sourced by quantum

effects, or should appear classically as duals via a geometric transition as in [84, 85]. In

particular, for the scenario described in [86, 87], the bulk fields mediating supersymmetry

breaking are type IIB RR axions, and we expect that the corresponding F-terms will be of

the type described in the paper (or at worst will descend from auxiliary fields in another

off-shell description of the hypermultiplets).

Another direction of work which should be relatively straightforward is the extension

to heterotic flux compactifications [88 – 93]. In these cases there are already a small set of

interesting examples.
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A. Mathematical conventions

The SU(3) and SU(3)×SU(3) structures employed in this paper can be defined, equivalently,

in terms of spinors ηN
± or in terms of the differential forms JN and ΩN , for N = 1, 2. The

relationship between the two is given in eqs. (2.8), (2.9) and (2.16). The conventions given

below ensure the consistency of these definitions, and are used to compute the auxiliary

fields in terms of the intrinsic torsion classes.

A.1 Spinor conventions

The gamma matrices γA, for A = 1, . . . , 6 are 8 × 8 complex matrices representing the

Clifford algebra {γA, γB} = 2ηAB where ηAB is the flat metric in the vielbein basis. The

gamma matrices with spacetime indices are γm = eAmγA, where eAm is the vielbein for the

six-dimensional Euclidean compactification manifolds M . The gamma matrices

γA1...Ak
= γ[A1

γA2 . . . γAk], (A.1)

including the identity matrix (for k = 0) and the chirality operator

γ7 = iγ123456, (A.2)

(for k = 6) are all linearly independent. Note that for the Euclidean space M we define γ7

in (A.2) with a factor of i so that (γ7)
2 = 1.

The chiral spinors η± satisfy the conditions

1
2 (1 ± γ7) η± = η±,
1
2 (1 ∓ γ7) η± = 0, (A.3)

as well as the Fierz identity

η± ⊗ η†+ =
1

8

6
∑

k=0

1

k!
η†+γA1...Ak

η±γ
Ak...A1, (A.4)

where the gamma matrix for the k = 0 term is the identity matrix. Note that this differs

by a factor of 2 from the conventions in refs. [13, 10]. The factor of 1/8 is fixed by taking
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the trace of both sides; the trace over the identity matrix on the right hand side gives a

factor of 8 since the gamma matrices are 8 × 8 matrices if they are to act on spinors of

both chiralities.20

It is also useful to define gamma matrices with complex indices, since we use these

extensively in this work. As usual, one can define γi and γ ı̄ to have the anticommutators

{γi, γ ̄} = 2gi̄ and {γi, γj} = {γ ı̄, γ ̄} = 0. (A.5)

These matrices act as fermionic raising and lowering operators, and can be used to

build the spinor representations of Spin(6). As a consequence of eqs. (2.16), the spinors

ηN
± of eq. (2.3) satisfy γ ı̄ηN

− = γiηN
+ = 0.

A.2 Metrics, p-forms, and the almost complex structure

Recall that the components of p-forms are defined as:

A =
1

p!
An1...npdx

n1 ∧ . . . ∧ dxnp

=
1

p!
AB1...Bpe

B1 ∧ . . . ∧ eBp (A.6)

where eB = eBmdx
m.

As in section 3.2, it is useful to define a complex vielbein {ea, ǫā} (cf. eq. (2.12)). Then,

in the vielbein basis, the metric is becomes

gab̄ = 1
2ηab̄ (A.7)

with η11̄ = η22̄ = η33̄ = 1 and other components of ηab̄ vanishing. In the same basis, the

fundamental form and canonically normalized (3, 0) form are

J = igab̄e
a ∧ eb̄,

Ω =
1

3!
ǫabce

a ∧ eb ∧ ec. (A.8)

Here, the antisymmetric symbol ǫabc is defined by

ǫ123 = ǫ231 = ǫ312 = 1, ǫ213 = ǫ321 = ǫ132 = −1,

with ǫabc = 0 otherwise. Similarly, we define ǫāb̄c̄ by

ǫ1̄2̄3̄ = ǫ2̄3̄1̄ = ǫ3̄1̄2̄ = 1, ǫ2̄1̄3̄ = ǫ3̄2̄1̄ = ǫ1̄3̄2̄ = −1,

with ǫāb̄c̄ = 0 otherwise. In terms of the latter,

Ωāb̄c̄ = gaāgbb̄gcc̄Ωabc

= gaāgbb̄gcc̄ǫabc

= 8ǫāb̄c̄ (A.9)

20We would like to thank A. Tomasiello for explaining this, and for his patient and generous help with

sorting out the conventions.
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For the three-form field strength H, we follow the conventions of Polchinski [94, 75]:

Hmnp = ∂mBnp + ∂nBpm + ∂pBmn, (A.10)

which is equivalent to H = dB, with the forms normalized in terms of their components

as in (A.6).
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